
The flow in an unequal elbow is typical of many flow configura- 

tions in which, as a sequel to separation, there is a reattachment of 

the detached stream to form a closed wake containing a standing eddy. 

A theoretical analysis of such a flow has been carried out by making 

an assumption regarding the distribution of vorticity, and by utilizing 

empirical data to establish the length of the wake. 

stzem m d  the separation region were embraced in the analysis, and. 

attention was focused on the particular condition of large Reynolds 

Number R, for which the pattern and mechanism of flow are stable and 

insensitive to changes in R. 

Both the detached 

Good agreement has been obtained between the calculated and the 

experimentally observed flow patterns in the elbow configuration; and 

it is anticipated that the method of analysis will be equally successful 

if applied to other flow configurations in which separation occurs in 

a contracting stream. 



NOTATION 

M Contraction ratio of the unequal elbow; and width of the broad limb. 

U 

V Kinematic viscosity. 

Mean velocity in the upstream limb of the elbow. 

R Reynolds Number, = MU/3 . 
z Physical plane containing the elbow configuration, = x + iy. 
t First transformed plane. 

R' Modulus on the t plane, = kl . 
c Dimension OC on the t plane. 

b Dimension OB on the t plane. 

s Second transformed plane. 

K Vortex strength. 
;8 

.e . S, Position of the vortex in the upper half of the s plane, = 

3;1 

w 

Position of the conjugate vortex in the lower half of the plane. 

Complex potential, = + + iv .  
w, Complex potential due to the point source in the s plane. 

Complex potential for the oblique imnersion of a flat plate in an 
otherwise undisturbed vortex flm. 

4 Velocity potential. 

Stream function. 

PR Pressure recovery on reattachment. 

C p  Pressure coefficient, = local pressure - ultimate downstream pressure. 
total pressure drop across the elbow 
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1. Introduction 

The traditional method of solving flow separation problems is to apply 

the classical free streamline theory proposed by Helmholtz (1868) in which 

the assumption is made that the pressure along the surface of separation is 

constant and equal to its downstream value. The extent to which the assump- 

tion is justified in a particular case determines the measure of agreement 

between the calculated flow pattern and the experimentally observed pattern. 

Generally, the assumption is not appropriate, particularly in cases where, 

as a sequel to separation, there is a reattachment of the detached stream 

to form a closed wake containing one or more standing eddies. If applied 

to such a flow configuration, the free streamline theory yields a particu- 

larly unsatisfactory description of the separation process as evidenced by 

the following characteristics: 

(a) The profile of the dividing streamline is inaccurately defined, 

(b) Reattachment is not simulated, and 

(c) The flow within the separation region is not embraced in the 

analysis. 

That the dividing streamline should be inaccurately defined is not 

surprising, because experimental observations reveal that the pressure along 

this contour is neither constant nor equal to the downstream pressure, as is 

assumed in the classical theory. In fact, the pressure in the wake near the 

separation point is considerably less than the downstream pressure, with the 

consequence that the observed width of the Separation region is several percent 

less than the predicted width. 

time the classical theory was introduced, Weisbach (1848) having observed 

and recorded the shapes of various separation surfaces. Some improvement 

regarding this aspect of the theoretical pattern is obtained if a modified 

Evidence of this was available even at the 
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form of the classical analysis is used. Such a modification has been pro- 

posed by Roshko (1953) and is based on the assumption that the pressure in 

the initial part of the separation region is constant, but lower than the 

downstream pressure. 

The classical and the Roshko models of flow do not describe the 

reattachment phenomenon and the circulatory flow within the separation region; 

neither do other existing potential flaw solutions sumnarized by Lichtarowicz 

and Markland (1963) and by Robertson (1965). However, there is a need for 

a model which does simulate reattachment, and this has long been recognized. 

Batchelor (1956), for example, has stated that if a solution could be found 

which exhibits a closed separation region as Reynolds Number approaches 

infinity, then that would be regarded as preferable to the free streamline 

solution. 

the flow configuration under consideration being that of a two-dimensional 

unequal elbow with separation at the inner corner. 

An attempt to obtain such a solution is made in the present work, 

Another limitation of existing potential flow models is that they do 

not satisfactorily describe the distribution of vorticity. Truesdale (1954) 

showed that the existence of only a small amount of viscosity may be of 

central importance in determining major flow characteristics; so that even 

in the limiting condition of vanishing viscosity, an accurate description 

of the residual vorticity is a prerequisite for a satisfactory solution. 

evidenced by the widely differing models which have been proposed to describe 

the limiting flow, the main difficulty is in predicting this distribution of 

vorticity. 

As 

Batchelor assumed the existence of an inviscid stream with a uniform 

diffusion of vorticity confined to the separation region; and a similar 

distribution was predicted recently by Acrivos et a1 (1965). In contrast, 
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a different distribution in the separation region was suggested by the 

experimental data of From (1963) and McGregor (1954). 

vorticity was observed at the center of rotation of the circulatory flow, 

together with a tendency for the concentration to increase with the lessening 

of viscous action. 

A concentration of 

Concerning the vorticity associated with the surface of separation, 

the free streamline of the Helmholtz model is, in effect, a uniform and 

infinitely long vortex sheet, whereas the experiments of Fage and Johansen 

(1928) have demonstrated that the sheet rapidly decays and ultimately 

disappears. Further evidence supporting the concept of a decaying vortex 

sheet and also the concept of a concentration of the vorticity within the 

separation region was presented at a recent symposium reported by Kichemann 

(1965). 

It may be concluded that available data strongly suggests that the 

most appropriate distribution of vorticity to be considered in the proposed 

theoretical model of flow is that of a concentration along the initial part 

of the dividing streamline and a separate concentration at the center of 

rotation of the standing eddy. 

Transformation from the Physical Plane 

The concentrations of vorticity are represented in the proposed model as 

a point vortex at the center of rotation of the eddy and as a vortex sheet 

along the dividing streamline (fig. 3). Apart from these singularities, the 

entire flow is irrotational, so that a potential flow analysis is appropriate 

throughout. 

physical plane can be conformally transformed by a Schwarz-Christoffel trans- 

formation into simpler geometry (the upper half of the t plane) where a study 

of the flow characteristics can be carried out more readily. 

It follows that the complex configuration and flow net of the 

The transfor- 

mation grid, illustrated in figures 1 and 2, was derived from the following 

equations : 
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And consideration of the point 1 yields an expression for the contraction ratio 

M= [c/(b-c)]" 

The required transformation equation is obtained by integration and, with 

t = 0 at L =  0 ,  is 

which can be simplified by putting b = 2 to fix the scale of the z plane. Hence 

h 
where M = [.I (2-c)l 

(4) 

I 
(I 
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Note should be taken of the line in the z plane which is transformed 

It is this unique contour which into the 60° straight line of the t plane. 

marries with the elbow wallI0,frm which it can be assumed that the flow 

initially separates along this path. Furthermore, experimental observations 

will be presented which reveal that the dividing streamline continues to follow 

this contour closely during the development of the separation region, so that 

the line is clearly the appropriate location of the vortex sheet in the L 

plane. 

In the transformed flow of the t plane, the vortex sheet is linear, and 
this feature leads to a considerable simplification of the subsequent analysis 

of flow. Not many flow configurations exhibit this characteristic and, for 

the majority, the sheet lies along a curved path on thet plane. 

unequal elbow is one of the few exceptions, and for a large range of contrac- 

tion ratios (2 Q M COO) ,  the dividing streamline is observed to lie near 

The 
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the 60° line. 

able for analysis, facilitating an assessment of the merits of the proposed 

potential flow model. 

This feature makes the elbow configuration particularly suit- 

3 .  Potential Flow Model 

Eaving derived the equation which gives the desired geometrical trans- 

formation from the z plane to thet plane, it is necessary to introduce into 

the upper haif of the latter a suitabie potentiai fiow pattern. To 2s this, 

the vorticity elements associated with the separated flaw are superimposed 

onto a uniform network of streamlines diverging from a point source (I) to a 
distributed sink at infinity (J), as Shawn in figure 3 .  The lower half of 

thet plane is assumed to contain a flow pattern symmetrical with that in the 

upper half. 

At this point, the relative positions of the point source and the vortex 

sheet on t h e t  plane must be clarified. 

t-2 transformation equation ( 4 ) ,  the length OA of the vortex sheet is much 

greater than the distance c of the point source from the origin and, indeed, 

the ratio will later be shmm to be of the order of IO3 . 

justified in all aspects of the analysis except the t - 2  transformation to 

treat the point source as if it were located at the origin of thet plane. 

Due to the logarithmic form of the 

Therefore, it is 

Some assumption has to be made regarding the distribution of vorticity 

along the vortex sheet in the t plane, and in fact the behavior of the sheet 

is assumed to be the same as if there were an impermeable plate innnersed in 

the fluid. 

tion of the relative motion on the two sides of the sheet, together with the 

attainment of a commn velocity at the downstream extremity. 

the analysis which follows, the line OA in thet plane is considered to be 

the location of a flat plate giving a smooth separation of flaw at A .  For 

convenience, the scale of thet plane is adjusted so that the line has unit 

This assumption is appropriate since it yields a realistic simula- 

Therefore, in 



i7ts length with its end at t= e . 
This treatment of the vortex sheet enables a further simplifying trans- 

formation to be carried out, viz., the t - S  transformation. It enables the 

V-shaped plate in thet plane, formed by the flat plate along OA and by a 

similar plate along the mirror image of OA below the axis, to be transformed 

into another plate O'AO lying on the axis of the 5 plane. The Schwarz- 

Chri8toffel equation i s  

= (S+l).QS) 5 - (w) ClL 
ds 

which is integrated to give the desired transformation equation 

The upper half of the t-s transformation grid is depicted in figure 4. 

Figure 5. shows the geometrical configuration of the s plane together 

with the potential flow elements transformed ftom thet plane. 

comprise a vortex doublet,K and -K , an impermeable plate O'AO, a point 

The elements 

source of strength W U a t  the end of the plate, and a distributed sink at 

infinity. 

resultant flow pattern is determined by the position of the doublet, b1.c 
and Is& 

Referring to the symbols defined in figure 5., it is clear that the 
ir 

-;e , and by its strength relative to that of the point source K/MU. 

In effect, 

is done in 

1. 

2. 

the three quantities 

the course of satisfying the following requirements. 

, 6 and K/Ho require evaluation, and this 

In thet plane, the fluid velocity at the tip of the plate is 
finite but not zero, and in the 8 plane too, the corresponding 
point (A at 8 = -1) marks the inception of the dividing 
streamline. 
final flow pattern is derived in 54, and serves as one of the 
three required to evaluate the quantities enumerated in the 
previous paragraph. 

The composite f l m  pattern in the 8 plane is clearly a syPmretrica1 
one with the plate O'AO lying on the axis of symmetry and hence 
along one of the streamlines. 
considerable bearing on the equilibrium of the potential flow 
elements, each one of which must be stationary under the action 

The equation describing this feature of the 

Despite this, the plate has a 
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of the others; e.g., the velocity of each concentrated 
vortex must be zero in two mutually perpendicular direc- 
tions. 
are derived in 8 5  , and serve to complete the evaluation 
of IC,l , 8 , and K/Mu. 

The two equations describing this equilibrium condition 

4. Condition for Smooth Separation 

It has been established that smooth separation from the tip of the 

plate in thet plane is ensured if,in the s plane, inception of the divid- 

ing streamline occurs at the point A ( s = -I). The Foiicwing derivakion is 

of an equation to describe this condition. 

The complex potentialw describing the arrangement of flaw elements 

shown in Zigure 3 is 

from which 

( 9 )  

The magnitude of the velocity at any point in thet plane = 

and at the tip of the plate where t = eL' , corresponding to s = -1, the 

velocity magnitude = where 

The intention is to satisfy the condition for this to be finite and 

non-zero. It is clear from equation (6) that the denominator is zero at 

8 = -1, and, therefore, for the above ratio to be finite, the numerator 

must also be zero. In other words, for the plate tip velocity to be finite 

El= 
Therefore, from equation (9), 

Equation (11) describes the condition for a finite separation velocity from 
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the tip of the plate, and the following derivation is of an equation for the 

1% magnitude of this velocity, 

Initially, it is indeterminate, since both l $ l k  and ElA are zero, 
and it must, therefore, be evaluated from the ratio of the second differential 

coefficients. 

From equation (9) 

And from equation ( 6 )  

(a) MU SZ+3%+3E +s 141~ x' (S.+l)(&4 I) 
Hence, the magnitude of the plate tip velocity 

5 .  Conditions for Equilibrium 

For equilibrium of the various elements constituting the potential 

flow in the s plane, each one must be stationary under the action of the 

others, and in particular, there must be equilibrium of the doublet, or 

rather of either one of the two synmetrical vortices which constitute the 

doublet. In fact, the equilibrium of the vortex in the upper half of the 

plane is investigated by considering the interaction at the vortex center 

of the source and the conjugate vortex. 

The flow pattern due to the point source is unaffected by the presence 

of the flat plate since the latter lies along one of the streamlines diverg- 

ing radially away. The pattern is unique and independent of the strength of 

the source, a typical streamline being that shown as a broken line passing 

through 0' in figure 6 .  
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The separate pattern due to the conjugate vortex is also unique and 

independent of the strength, but as the figure shows, the presence of the 

flat plate now has an important bearing on the flow pattern. 

a severe distortion of the streamlines, which would otherwise form concentric 

circles, and it causes the direction of fluw at the conjugate point to deviate 

from the horizontal. Indeed, for the particular vortex position depicted 

in the figure, the flow at the conjugate point is directed towards 0% and is 

exactly opposite that due to the point source. This feature does not apply 

in general, but only for certain vortex positions, the locus of which is 

obtained by computation from the equations given in the appendix, and is 

shown in the figure as a broken line passing through the chosen vortex position. 

It causes 

Clearly, for the conjugate point to be stationary under the interaction 

of the source and the active vortex, the latter must lie along theequi- 

direction locus regardless of the rpagnitudee of these two elements of the 

flow. 

the same in magnitude as that due to the vortex, and it differs from the 

first condition in that the magnitude of the '/Mu parameter is now important. 

In order to make the conjugate point stationary, each point on the locus must 

be associated with a particular value of the parameter, and the combination 

which is chosen is that which simultaneously satisfies equation (11) result- 

ing in a smooth separation from the tip of the wall in the+ plane. 

- *  

The second condition requires that the velocity due to the source be 

The required position for the vortex in the upper half of the s plane 

is at Is,,/ = 0.444 and 0 = 8d33' , and the value of associated with 

it i s  1.373. The corresponding flow in the t plene is illustrated in fig. 7. 

6. Final Flow Patted 

The locating of the vortex doublet and the evaluating of theyMU ratio 

enable the final potential fluw pattern to be derived in the s and t planes 
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using equations (8) and (71, respectively. 

half of the symetricalt plane is shown in figure 8, and it is this pattern 

which is subsequently transformed to the elbow configuration of the z plane. 

Hawever, before the transformation can be carried out, the scale of the t 

plane must be established. 

length of the potential flow separation region the same as the length of 

the separation region observed experimentally. 

The flow relating to the upper 

This is done in the course of making the 

The experiments formed part of an earlier investigation (1962) of flow 

separation and reattachment in an unequal elbow, and included a flow visuali- 

zation study and the measurement of pressure and shear stress along the 

wall bounding the separation region. 

part of the dividing streamline to be located, but the downstream part was 

obscured by turbulence so that recourse to pressure and shear stress measure- 

ments had to be made in order to throw light-& the nature of the reattach- 

ment. 

an example of which is illustrated in ffgure 9 for an elbow having a 5/1 con- 

traction ratio and for Reynolds Number in the range 9,440 to 18,170. 

Throughout this wide range, the effect of R on the wall pressure distribution 

was very small, fromwhich it appears likely that further increase in R 

would not greatly affect the distribution. 

Visual observations enabled the initial 

In fact, the latter is always characterized by a sharp pressure recovery, 

The exact point of reattachuent along a wall is characterized by the 

absence of shear stress, and in the experiments for the elbow, the desired 

point was located in this way. 

related to the pressure results, shear stress measurements indicated that 

reattachment occurred at a point corresponding to z = 2.2. 

probably the same for a l l  large Reynolds Numbers, so that the constancy of 

the length of the Separation region makes this empirical dimension an 

For the same range o f R  as that which 

Its position is 
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appropriate one to introduce into the potential flaw solution. Incidentally, 

the pressure recovery at the observed reattachment point was 0.75 complete, 

as shown in the figure, and this is consistent with the results of Nash (1963) 

who, for a variety of configurations, found the same degree of completeness 

of the reattachment pressure recovery at the point of zero shear stress 

along the wall. 

Also associated with reattachment is a high level of turbulent mixing, 

and since the present state of knowledge does not enable the point of incep- 

tion to be predicted theoretically, recourse would have to be made to experi- 

ment if its location were required. It is not surprising, therefore, that 

the location of the reattachment point must also be established experimentally, 

as is the case here. In fact, a scale of 1750 has to be introduced to thet 

plane, so that when the flow is transformed to the z plane, the reattachment 

point is in the desired position. 

t = 1750. c 

rent point a t t  = 3623, and the point source at t = -1.923. 

Point A will, therefore, be located at 
0413 L , the concentrated vortex at t = 1767.c , the reattach- i% 

The final transformation yields the flow pattern illustrated in the 

upper part of figure 9. It reveals the closeness of the profile of the vortex 

sheet to that of the observed dividing streamline, and also demonstrates the 

circulatory flow in the separation region and the downstream reattachment. 

Unfortunately, there is no experimental evidence available for the elbow which 

gives the position of the center of rotation of the circulatory flaw in the 

separation region. 

which the calculated vortex position ( z = 1.982.c 

And it appears that the most suitable camparitor against 

) can be compared is 
o q r  i 

the data of McGregor who, for the separation region on an airfoil, located a 

powerful vortex at the downstream end of the region, and in a similar 

relative position to that calculated for the vortex center in the elbcw. Nor 
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are there any experimental results available for the velocity variation along 

the dividing streamline with which to compare the calculated velocity at the 

end of the vortex sheet.(llhe latter, computed from equation (12) and expressed 

as a fraction of the ultimate velocity in the downstream limb of the elbcrw, 

is 2.16). 

In conclusion, it may be stated that the final flow pattern illustrated 

in figure10 confirms that the proposed potential flow model gives a realistic 

representation of the flow separation 

It is anticipated that the model will also be appropriate for the solution of 

other problems in which the flow separation occurs in a contracting stream. 

(An example of such a configuration is the entrance to a pipe from a reservoir). 

Flow separation in an expansive flow is likely to be less suitable because 

of difficulties in locating the reattachment point and in defining the 

vortex sheet. 

and reattachment in an unequal elbcrw. 

the University of Pittsburgh, as part 

data was processed at the University 

Computation Center under a grant from the National Science Foundation, (G 11309). 
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APPENDIX 

Further to the discussion in 55 , the calculation is given for the 

location of the desired stationary point conjugate to one active vortex in 

the lower half of the s plane. 

The complex potential4 due to the point source is unaffected by the 

presence of the flat plate, and is 

But the presence of the plate is significant in the case of the 

active vortex for which the flow pattern is derived from the potential flow 

solution to the problem of a flat plate normal to a uniform stream. The 

complex potential % at a point< in such a stream moving with undisturbed 

velocity U past a flat plate of length 2K, is given by equation (A2) which, 

together with the required transformation equations, is included in Table 1. 

a(= log p 

C = r + z  I ds I - = I -  
& 2 

Table 1. The equations transform the simple configuration of thed plane into 
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the s plane to give the flow pattern resulting from the oblique imnersion of 

a flat plate in an otherwise undisturbed vortex flow. al, and 6 define the posi- 
tion of the plate relative to the vortex. 

The velocity at any point in the s plane due to the single active vortex 

is given by * computed from the differential coefficients in the table. 
Corresponding to this for the point source is the expression dw' defined by 

equation (Al), and in the equilibrium condition, 

point conjugate to the vortex. 

d8 

do, = - at the 
cis 
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POTENTIAL FLOW PATTERN IN THE Z PLANE 

The broken line indicates 
the observed profile of 
the dividing streamline 
for R = 11.340. 
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Figure 9 
EXPERIMENTALLY MEASURED PRESSURE DISTRIBUTION FOR THE W A U  OJ OF THE UNEQUAL ELBOW 

5 Local Pressure - Ultimate Downstream Pressure 
Total Pressure Drop Across the Unequal Elbow Pressure Coefficient, 

Reynolds Number, B - MU/Y where Y is the kinematic viscosity 
'P 
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